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Abstract— Conventional means of mineral exploration requires physical access to the region of interest, which is a labor-intensive process 

with many associated challenges. Furthermore, it results in geological maps with nominal precision and is limited by many factors. Remote 

sensing has emerged as a prominent tool for environment mapping, land cover, and land use mapping, but its applications in geological 

mapping are comparatively limited. However, due to the availability of non-commercial satellite data sources and cloud processing 

services, its applications are emerging in the mineral exploration and geological mapping community.  

This study briefly explains the process of geological mapping using different data mining algorithms. Furthermore, it explores other data 

mining techniques for semantic segmentation of remote sensing data specifically for geological mapping. Moreover, this study categorizes 

them into three classes, i.e., conventional approaches, machine learning techniques, and deep learning techniques. The study contrast 

and compares these techniques factoring in their feasibility for lithological mapping and narrows them down to a couple of most prominent 

approaches in each category.  

The findings of this study demonstrate the potential of semantic segmentation techniques for geological mapping with a review of practical 

case studies. Furthermore, it also explores future avenues for research in this domain. The study is beneficial for researchers in 

geographic information sciences and geological sciences, working on geological mapping, land cover/land use mapping, or environment 

mapping. 

Index Terms— Remote Sensing, Geological Mapping, Limestone, Semantic Segmentation, Data Mining, Machine Learning, Deep 

Learning, Review 

——————————      —————————— 

1 INTRODUCTION                                                                     

minerals are found crystalline, normally formed by depo-

sition of an element or a group of elements through 

some geological process. There are different types of 

rock-forming minerals but the most common are Olivine, Mi-

cas, Pyroxenes, Quartz, Amphiboles and Feldspar etc. others 

may include ferric, oxides of sulfides minerals [1]. Rock types 

can be classified into Sedimentary, Igneous and Metamorphic 

rocks each classified based on the process of formation. Sed-

imentary rocks are formed as a result of deposition of sedi-

ments, igneous are formed as a result of magmatic or volcanic 

activities and metamorphic rocks are a result of metamorpho-

sis (change) by heat and pressure [2]. Mineral may occur on 

surface or subsurface depending on its process of formation. 

Surface minerals are comparatively easier to explore and map 

whereas for subsurface minerals indicator minerals exists 

which are used form it’s mapping and exploration [3]. 

Geological mapping is the art and science of identification 

and mapping of rocks and minerals using remote sensing 

techniques [4]. Some geologies have economic significance 

and some not which requires the use of data mining tech-

niques for its delineation. Large amount of multispectral and 

hyperspectral data is available which can be used for miner-

alogical mapping including data from non-commercial satellites 

such as ASTER, Sentinel and Landsat. Powerful computation-

al sources such as cloud based remote sensing platform, 

Google Earth Engine (GEE), are also available for processing 

this data [5]. Many techniques for mining large amounts of 

data with parallel processing chains have been researched for 

identification of mineralogical hotspots. However, this domain 

is open for more research with great potential. 

This study will explore a variety of literature on data mining 

techniques used for semantic segmentation for the purpose of 

geological mapping. The study has categorized literature in 

three broad classes i.e. Conventional Techniques, Machine 

Learning Techniques and Deep Learning Techniques. The 

study concludes with a summary of the literature review and 

some remarks about future venues for research. 

2 SEMANTIC SEGMENTATION FOR GEOLOGICAL 

MAPPING: AN OVERVIEW 

Semantic segmentation is the classification of each individual 

pixel in an image. It differs from conventional classification 

task in a sense that in semantic segmentation instead of the 

on label for the whole image, each pixel is labeled individually 

and clustered together to form a segment in the image [6].  

Remote sensing differs from a normal image classification task 

because of a few important factors. First, the remote sensing 

data is composed of huge 3D matrices of pixel with very large 

dimensions thus processing each image as a whole might not 

be convenient [4]. Secondly, a single remote sensing image or 

scene conventionally consists of more than 3 visible bands. To 

explain further, a normal image is mainly composed of three-

color bands i.e. Red, Green, Blue (RGB) [4]. Each band can 

be considered a black and white image with each pixel indicat-

ing the intensity of reflection in that wavelength region. In re-
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mote sensing images NIR, SWIR and TIR bands are also in-

cluded which are very important for delineating different earth-

ly objects. Specifically, in geological mapping visible bands 

holds nominal importance as compared to non-visible bands 

such as NIR, SWIR, and TIR which have larger wavelength as 

compared to visible bands and more sensitive to geological 

compositions [7].  

 
Figure 1 Remote sensing process schematic for geological mapping 

To process remote sensing data some prerequisite steps 

are very important to bring it in the required shape and format. 

Remote sensing data is susceptible to a lot of errors and noise 

including Atmospheric, Radiometric and Geometric errors. A 

summary of the most commons noise in remote sensing data 

is given in the table below 

Table 1 Common Noise and Interferences in Remote Sensing Data 

Noise/Interferen
ce 

Description Ref 

Crosstalk in AS-

TER 

ASTER images are affected 

by the ‘crosstalk’ instrument 

problems i.e. the light from band 

4 gets leaked into SWIR bands 

specifically band 5 and band 9. 

[8] 

Atmospheric 

Noise 

The reflected or propagating 

radiations are interfered by aer-

osol, dust particles, atmospheric 

temperature or absorbed by 

different gasses in the atmos-

phere 

[9] 

Noise due to 

Thermal energy 

Thermal noise occurs due to 

the heat in internal circuitry 

which causes the agitation in 

charge carriers, typically elec-

tron. 

[10] 

Shot Noise The noise which is modelled 

by a poison process is called 

shot noise. This occurs due to 

the discrete nature of circuitry. In 

optical devices photon counting 

can also cause shot noise, 

where the associated factor is 

the particle nature of light. 

[10] 

Quantization 

Noise 

When conversion from ana-

logue to digital signal we quan-

tize the signal at a quantization 

rate which is adjusted by the 

Least Significant Bit (LSB). 

[10] 

 

Without pre-processing remote sensing data processing will 

result in thematic maps plagued by errors and inconsistencies. 

There are several preprocessing techniques available specific 

to remote sensing imagery some of these are listed in the ta-

ble below with a brief explanation and reference. 

Table 2 Multi- and Hyperspectral Data Preprocessing 

Technique Description Ref 

Co-

Registration 

When we need to do tem-

poral analysis multiple images 

of the same location at differ-

ent time are studies and is 

called Co-Registration. Miner-

als property usually change 

with time due to geothermal 

and chemical alteration pro-

cesses. 

[11] 

Savitzky-

Golay filter 

It is a simple but effective 

technique to remove cloud 

contamination and atmospher-

ic variability noise in NDVI 

time-series analysis. 

[12] 

Wiener Filter It reduces the mean 

squared error between the 

estimated random process and 

the desired one. In the referred 

study SAR image and Multi-

band images are processed by 

wiener-based filters for classi-

fication. 

[13] 

Kalman Filter Is an iterative mathematical 

algorithm which rapidly esti-

mates the desired function 

from the data. Starting at an 

initial random estimate it will 

check the datapoint calculate 

its Error and Variances from 

the estimate and adjust its pa-

rameters. It will keep doing that 

iteratively until it can estimate 

the desired signal with as 

much precision and low error 

or variance as possible 

[14] 

Absolute 

Correction 

Methods using 

Radiative 

Transfer Codes 

Used for the used to nullify 

the atmospheric error such as 

terrain illumination effect and 

the absorption and scattering 

effects. 

[15] 

ATREM, 

ATCOR 3 

Atmospheric removal pro-

gram (ATRAM) uses a prede-

fined model of the atmosphere 

to remove its errors from satel-

lite image. 

Atmospheric Correction 

Model 3 (ATCOR 3) uses a 

MODTRAN Radiative Transfer 

Code to allow for modeling the 

atmospheric conditions at the 

time of satellite overpass which 

[16][17

] 
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is used to correct errors due to 

aerosol, ozone, vapor, and 

atmospheric mass. 

Spectral 

Shape Match-

ing Method 

(SSMM) 

An algorithm developed by 

Korean study for atmospheric 

correction of remote sensing 

data based on a spectral 

shape matching technique. 

[18] 

Geometric 

Correction 

The image captured at a lo-

cation may not be exactly pro-

jected on the same location 

due to errors in its projection 

data. To solve that projection 

mathematics is used to calcu-

late exact projection data and 

correct the errors. 

[19] 

Nearest 

Neighbor 

Resampling 

Algorithm 

(NNR) 

A resampling algorithm to 

increase the spatial resolution 

of remote sensing data which 

can results in refined geologi-

cal maps with sharp lithological 

boundaries. 

[20] 

Radiometric 

Correction 

When images are captured 

some pixel may have errors 

due to sensor malfunction or 

due to on-board prepro-

cessing. Radiometric correc-

tion are a set of techniques 

based on mean, mode or me-

dian or Machine Learning or 

Probabilistic methods to re-

move those errors. 

[21] 

Topographic 

Correction 

A set of statistical or empiri-

cal methods used to fix DEM 

topographic errors in remote 

sensing data of rough terrains. 

[22] 

3 CONVENTIONAL TECHNIQUES FOR GEOLOGICAL 

MAPPING 

The most common set of data mining techniques used for geo-

logical mapping includes False Color Composites i.e. mapping 

of non-color bands to color bands [23], band ratio which is 

basically performing mathematics with the image bands, Prin-

cipal Component Analysis (PCA) which works with eigen de-

composition of the image data [24], Independent Component 

Analysis (ICA) which is used in blind source separation using 

known spectral signature of mixed response [25], Minimum 

Noise Fraction (MNF) which uses eigen decomposition to cal-

culate a rotation matrix and uses it to segregate noise in the 

data and decorrelation stretching which basically stretches the 

raw band data across its principal axis using a rotation matrix 

thus suppressing band-band correlation [26]. 

 
Figure 2 Example of Geological Product as a result of conventional tech-
niques. Top to bottom (a) Band Ratio/Band Mathematics 3/1, (b) 5/7, 
PCA (c) PC3 of Landsat TM 1,3,4,5 (d) PC3 of Landsat TM 1,4,5,7 and (d) 
PC4 of Landsat TM 1,4,5,7 [27] 

Although, this is a very limited set of techniques but a large 

amount of very successful algorithms is based on these basic 

techniques and considered their enhancements such as 

Crosta Techniques which is the most common variation of 

Principal Component Analysis in which Principal Components 

are selected based on eigen vector loadings analysis [28]. 

Crosta Technique was introduced basically for hydrothermal 

alteration mapping but it’s success in mapping minerals have 

earned it a lot of significance in the geological mapping com-

munity.  

Some more techniques have been covered in Table 3. Many 

other conventional techniques exist in literature which are 

commonly being used to this day for generating thematic maps 

of geologies. 

 

Table 3 Conventional Remotes Sensing Techniques used in Geologi-
cal Mapping 

Technique Description Ref 

Digital Eleva-

tion Model 

(DEM) 

Digital Elevation Model based on 

SAR data used for Radiometric 

Correction of Satellite Images and 

elevation mapping. This can be 

used in combination with a variety 

of other techniques 

[29] 

Mixture Tuned 

Matched Filter-

ing 

Use Mixture Tuned Matched Fil-

tering (MTMF) to perform Matched 

Filtering (MF) and to add an infea-

sibility image to the results. The 

infeasibility image is used to re-

[30] 
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duce the number of false positives 

that are sometimes found when 

using MF. Pixels with a high infea-

sibility are likely to be MF false 

positives. Correctly mapped pixels 

will have an MF score above the 

background distribution around 

zero and a low infeasibility value. 

The infeasibility values are in 

noise sigma units that vary in DN 

scale with an MF score (see the 

following figure). 

Minimum 

Noise Fraction 

Transform 

Use MNF Rotation transforms to 

determine the inherent dimen-

sionality of image data, to segre-

gate noise in the data, and to re-

duce the computational require-

ments for subsequent processing.  

Matched Filtering (MF) using Min-

imum Noise Fraction to perform 

Matched Filtering (MF) and to add 

an infeasibility image to the re-

sults. The infeasibility image is 

used to reduce the number of 

false positives that are sometimes 

found when using MF. Pixels with 

a high infeasibility are likely to be 

MF false positives. 

[31] 

4 MACHINE LEARNING TECHNIQUES 

The most commonly used supervised mapping techniques in 

geological mapping are conventional Machine Learning Algo-

rithms (MLA) such as Support Vector Machines (SVM) [32], 

Classification and Regression Trees (CART) [33], Random 

Forrest (RF) [34] and Naïve Bayes (NB) [35] for their simplicity, 

robustness and ability to train on less amount of data.  

For geological mapping the boundaries are very subtle and 

each pixel in a remote sensing image have accumulated re-

sponse from different lithologies due to lower spatial resolution 

of non-commercial satellite data. Thus, to identify subtle spec-

tral patterns which can delineate different lithologies calls for 

more robust techniques than conventional data mining algo-

rithms i.e. Machine Learning Algorithms. Most commonly used 

MLA in remote sensing i.e. CART and RF are used for envi-

ronmental and geological mapping but the fact that they are 

susceptible to noise makes it very challenging to reliably train 

these algorithms. Many unsupervised clustering techniques 

are used for data labeling and generating thematic maps such 

as active spatial clustering [36], X-Means and K-Means Clus-

tering [37], multi objective genetic clustering [38], spatial and 

temporal clustering [34] etc. These techniques are beneficial in 

a way that they don’t require manual data annotation and clus-

ter alike spectral and spatial data together which can result in 

geological maps. However, their accuracy is not as good as 

supervised techniques which can classify each pixel based on 

the training data provided.  

 

Figure 3 Visualization of lithological class predictions using multiple 
MLAs integrating geophysical data with number of cluster parameters 
[34] 

Although, MLAs have proven to be effective in mapping lithol-

ogies. However, conventional MLAs are limited in case of geo-

logical mapping for the very reason that the geological compo-

sitions are subtle and the patterns required to delineate are 

deeply enmeshed in pixel data which requires more powerful 

techniques i.e. Deep Learning Algorithms (DLAs). 

5 DEEP LEARNING TECHNIQUES 

Deep learning algorithm (DLAs) is a machine learning algo-

rithm which is based on the functionality of biological neuron. It 

mimics the learning process of biological neural networks 

through mathematical operations. DLAs are massive parallel 

mathematical operation of summation and multiplication which 

processes the input data and performs predictions. It can be 

used for regression and classification. When it is used for 

classification of each individual pixel in an image then it is 

called semantic segmentation. DLAs are very powerful as long 

as large amount of training data and computational capacity is 

provided. Training data is dependent upon the complexity and 

structure of the algorithms. Similarly, computational time vary 

with the model structure. 

To train a DLA for semantic segmentation of remote sensing 

image data. The data is converted into processable patches 

mostly of 255 by 255 dimensions with all the bands stacked as 
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a third dimension. Each patch is flattened and fed into the in-

put layer. The input layer performs massive multiplication and 

summation operation on the input data and generate output at 

each node of the input layer which is then passed through an 

activation function and then provided to the hidden layer. 

(1) 

This process of multiplication and summation continues un-

til we reach the output layer where an activation function con-

verts the output of the final hidden layer into probabilities. 

There can be one or multiple nodes in the output layer de-

pending upon the number of classes. 

 

 

 

Figure 4 Machine Learning semantics segmentation process using deep 
learning approaches 

DLAs have recently started being rigorously researched by the 

remote sensing community. From the simplest DLA i.e. Multi-

layered perceptron model to a state-of-the-art Generative Ad-

versarial Networks (GAN) and U-Net, every DLA algorithm is 

being tested for Geological mapping. Since, these have re-

cently started emerging as dominant research topic thus there 

is still room for a lot of remote sensing specific DLA approach-

es which can outperform the standard. Still, DNN for Geo-

chemical mapping [39], CNN for super-resolution [40], FCNN 

for semantic segmentation [6], Conditional GAN for Image to 

Digital Surface Model [41], probabilistic neural network for 

limestone mapping [42] are some of the state-of-the-art re-

searches carried out in the recent 3 years. 

Besides classification, clustering based semantic segmenta-

tion have also been carried out using deep learning approach-

es such as CNN based clustering [43], DNN for dune pattern 

mapping [44], DCNN for semi-supervised semantic segmenta-

tion [45] etc.  

However, the work in DNN specifically for lithological classifi-

cation and geological mapping is limited. Among, all other cat-

egories of data mining algorithm this is the most prominent 

and recent with huge demand for research, specifically in 

complex model structures, data preprocessing and feature 

engineering techniques.  

6 CONCLUSIONS 

Due to the many challenges associated with conventional 

mineral exploration techniques, remote sensing-based geolog-

ical mapping has conquered all due to its feasibility in every 

aspect from cost to precision. Conventional remote sensing 

techniques have been very useful for geological mapping, but 

due to the emergence of Machine Learning algorithms, their 

use has become limited. Most of the time, they are integrated 

with MLAs to improve accuracies. Furthermore, deep learning 

approaches have recently started showing prominence in geo-

logical mapping research due to the availability of large 

amounts of data and computational capabilities. Since DLAs 

have recently dominated geological mapping research, there 

is still a lot of room for testing recently published models for 

semantic segmentation of remote sensing data. Specifically, U-

Net and its variants can be used for remote sensing semantic 

segmentation object localization. 
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